3,316 research outputs found

    Width and Magnetic Field Dependence of Transition Temperature in Ultranarrow Superconducting Wires

    Full text link
    We calculate the transition temperature in ultranarrow superconducting wires as a function of wire width, resistance and applied magnetic field. We compare the results of first-order perturbation theory and the non-perturbative resummation technique developed by Oreg and Finkel'stein. The latter technique is found to be superior as it is valid even in the strong disorder limit. In both cases the predicted additional suppression of the transition temperature due to the reduced dimensionality is strongly dependent upon the boundary conditions used. When we use the correct (zero-gradient) boundary conditions, we find that theory and experiment are consistent, although more experimental data is required to verify this systematically. We calculate the magnetic field dependence of the transition temperature for different wire widths and resistances in the hope that this will be measured in future experiments. The predicted results have a rich structure - in particular we find a dimensional crossover which can be tuned by varying either the width of the wire or its resistance per square.Comment: 12 pages, 1 table, 7 figures. The changes made to the paper are ones of emphasis. The comparison between theory and experiment has been altered, and detailed comparisons of various approximations have been omitted, although the results are summarised in the paper. Much more emphasis has been placed on the new predictions of the effect of an applied magnetic field on transition temperature in wires (Figs. 5-7

    Some Conclusions and Suggestions Regarding the Polynesian Problem

    Get PDF

    Generating Bounds for the Ground State Energy of the Infinite Quantum Lens Potential

    Full text link
    Moment based methods have produced efficient multiscale quantization algorithms for solving singular perturbation/strong coupling problems. One of these, the Eigenvalue Moment Method (EMM), developed by Handy et al (Phys. Rev. Lett.{\bf 55}, 931 (1985); ibid, {\bf 60}, 253 (1988b)), generates converging lower and upper bounds to a specific discrete state energy, once the signature property of the associated wavefunction is known. This method is particularly effective for multidimensional, bosonic ground state problems, since the corresponding wavefunction must be of uniform signature, and can be taken to be positive. Despite this, the vast majority of problems studied have been on unbounded domains. The important problem of an electron in an infinite quantum lens potential defines a challenging extension of EMM to systems defined on a compact domain. We investigate this here, and introduce novel modifications to the conventional EMM formalism that facilitate its adaptability to the required boundary conditions.Comment: Submitted to J. Phys.

    On the importance of background subtraction in the analysis of coronal loops observed with TRACE

    Full text link
    In the framework of TRACE coronal observations, we compare the analysis and diagnostics of a loop after subtracting the background with two different and independent methods. The dataset includes sequences of images in the 171 A, 195 A filter bands of TRACE. One background subtraction method consists in taking as background values those obtained from interpolation between concentric strips around the analyzed loop. The other method is a pixel-to-pixel subtraction of the final image when the loop had completely faded out, already used by Reale & Ciaravella 2006. We compare the emission distributions along the loop obtained with the two methods and find that they are considerably different. We find differences as well in the related derive filter ratio and temperature profiles. In particular, the pixel-to-pixel subtraction leads to coherent diagnostics of a cooling loop. With the other subtraction the diagnostics are much less clear. The background subtraction is a delicate issue in the analysis of a loop. The pixel-to-pixel subtraction appears to be more reliable, but its application is not always possible. Subtraction from interpolation between surrounding regions can produce higher systematic errors, because of intersecting structures and of the large amount of subtracted emission in TRACE observations.Comment: 9 pages, 9 figure

    Development of a Computerized App Based on Fitness Norms of University Students

    Get PDF
    Please view abstract in the attached PDF fil

    Benchmark full configuration-interaction calculations on HF and NH2

    Get PDF
    Full configuration-interaction (FCI) calculations are performed at selected geometries for the 1-sigma(+) state of HF and the 2-B(1) and 2-A(1) states of NH2 using both DZ and DZP gaussian basis sets. Higher excitations become more important when the bonds are stretched and the self-consistent field (SCF) reference becomes a poorer zeroth-order description of the wave function. The complete active space SCF - multireference configuration-interaction (CASSCF-MRCI) procedure gives excellent agreement with the FCI potentials, especially when corrected with a multi-reference analog of the Davidson correction

    Physiological modulation of iron metabolism in rainbow trout (Oncorhynchus mykiss) fed low and high iron diets

    Get PDF
    Iron (Fe) is an essential element, but Fe metabolism is poorly described in fish and the role of ferrireductase and transferrin in iron regulation by teleosts is unknown. The aim of the present study was to provide an overview of the strategy for Fe handling in rainbow trout, Oncorhynchus mykiss. Fish were fed Fe-deficient, normal and high-Fe diets (33, 175, 1975 mg Fe kg-1 food, respectively) for 8 weeks. Diets were chosen so that no changes in growth, food conversion ratio, haematology, or significant oxidative stress (TBARS) were observed. Elevation of dietary Fe caused Fe accumulation particularly in the stomach, intestine, liver and blood. The increase in total serum Fe from 10 to 49 μmol l-1 over 8 weeks was associated with elevated total Fe binding capacity and decreased unsaturated Fe binding capacity, so that in fish fed a high-Fe diet transferrin saturation increased from 15% at the start of the experiment to 37%. Fish on the high-Fe diet increased Fe accumulation in the liver, which was correlated with elevation of hepatic ferrireductase activity and serum transferrin saturation. Conversely, fish on the low-Fe diet did not show tissue Fe depletion compared with normal diet controls and did not change Fe binding to serum transferrin. Instead, these fish doubled intestinal ferrireductase activity which may have contributed to the maintenance of tissue Fe status. The absence of clear treatment-dependent changes in branchial Fe accumulation and ferrireductase activity indicated that the gills do not have a major role in Fe metabolism. Some transient changes in Cu, Zn and Mn status of tissues occurred.Facultad de Ciencias Naturales y Muse

    Financial Inclusion: Lessons From Rural South India

    Get PDF
    Financial inclusion/exclusion has recently been emphasised as an important policy option aimed at alleviating poverty, minimising social exclusion and enhancing economic growth. In this article, we review the growing interest in financial exclusion and inclusion, define them and demonstrate their existence in developing and developed countries. Our empirical focus is on whether financial inclusion has been successfully implemented in four sites in rural South India where banks claimed that financial inclusion is complete. Although many rural people in South India are financially included, the concept of financial inclusion is more complex than usually portrayed. Our findings show that social and personal deprivation contributes to financial exclusion and should be viewed as key barriers to financial inclusion. We also suggest that financial inclusion is not a monolithic phenomenon and should be studied in a multi-layered fashion, ranging from having a bank account to making full use of modern financial instruments
    corecore